DENCAST: distributed density-based clustering for multi-target regression
نویسندگان
چکیده
منابع مشابه
Entropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملScalable Density-Based Distributed Clustering
Clustering has become an increasingly important task in analysing huge amounts of data. Traditional applications require that all data has to be located at the site where it is scrutinized. Nowadays, large amounts of heterogeneous, complex data reside on different, independently working computers which are connected to each other via local or wide area networks. In this paper, we propose a scal...
متن کاملDBDC: Density Based Distributed Clustering
Clustering has become an increasingly important task in modern application domains such as marketing and purchasing assistance, multimedia, molecular biology as well as many others. In most of these areas, the data are originally collected at different sites. In order to extract information from these data, they are merged at a central site and then clustered. In this paper, we propose a differ...
متن کاملHierarchical Density-Based Clustering for Multi-Represented Objects
In recent years, the complexity of data objects in data mining applications has increased as well as their plain numbers. As a result, there exist various feature transformations and thus multiple object representations. For example, an image can be described by a text annotation, a color histogram and some texture features. To cluster thesemulti-represented objects, dedicated datamining algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Big Data
سال: 2019
ISSN: 2196-1115
DOI: 10.1186/s40537-019-0207-2